skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nasu, Nasrin_Jahan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper proposes and investigates the two-grid stabilized lowest equal-order finite element method for the time-independent dual-permeability-Stokes model with the Beavers-Joseph-Saffman-Jones interface conditions. This method is mainly based on the idea of combining the two-grid and the two local Gauss integrals for the dual-permeability-Stokes system. In this technique, we use a difference between a consistent mass matrix and an under-integrated mass matrix for the pressure variable of the dual-permeability-Stokes model using the lowest equal-order finite element quadruples. In the two-grid scheme, the global problem is solved using the standard$$ P_1-P_1-P_1-P_1 $$ P 1 - P 1 - P 1 - P 1 finite element approximations only on a coarse grid with grid sizeH. Then, a coarse grid solution is applied on a fine grid of sizehto decouple the interface terms and the mass exchange terms for solving the three independent subproblems such as the Stokes equations, microfracture equations, and the matrix equations on the fine grid. On the other hand, microfracture and matrix equations are decoupled through the mass exchange terms. The weak formulation is reported, and the optimal error estimate is derived for the two-grid schemes. Furthermore, the numerical results validate that the two-grid stabilized lowest equal-order finite element method is effective and has the same accuracy as the coupling scheme when we choose$$ h=H^2 $$ h = H 2
    more » « less